Extensions 1→N→G→Q→1 with N=C22×S3 and Q=C4

Direct product G=N×Q with N=C22×S3 and Q=C4
dρLabelID
S3×C22×C448S3xC2^2xC496,206

Semidirect products G=N:Q with N=C22×S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22×S3)⋊C4 = C23.6D6φ: C4/C1C4 ⊆ Out C22×S3244(C2^2xS3):C496,13
(C22×S3)⋊2C4 = S3×C22⋊C4φ: C4/C2C2 ⊆ Out C22×S324(C2^2xS3):2C496,87
(C22×S3)⋊3C4 = C2×D6⋊C4φ: C4/C2C2 ⊆ Out C22×S348(C2^2xS3):3C496,134

Non-split extensions G=N.Q with N=C22×S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22×S3).C4 = C12.46D4φ: C4/C1C4 ⊆ Out C22×S3244+(C2^2xS3).C496,30
(C22×S3).2C4 = D6⋊C8φ: C4/C2C2 ⊆ Out C22×S348(C2^2xS3).2C496,27
(C22×S3).3C4 = C2×C8⋊S3φ: C4/C2C2 ⊆ Out C22×S348(C2^2xS3).3C496,107
(C22×S3).4C4 = S3×M4(2)φ: C4/C2C2 ⊆ Out C22×S3244(C2^2xS3).4C496,113
(C22×S3).5C4 = S3×C2×C8φ: trivial image48(C2^2xS3).5C496,106

׿
×
𝔽